An Efficient hybrid filter-wrapper metaheuristic-based gene selection method for high dimensional datasets
نویسندگان
چکیده
منابع مشابه
Fast wrapper feature subset selection in high-dimensional datasets by means of filter re-ranking
This paper deals with the problem of supervised wrapper-based feature subset selection in datasets with a very large number of attributes. Recently the literature has contained numerous references to the use of hybrid selection algorithms: based on a filter ranking, they perform an incremental wrapper selection over that ranking. Though working fine, these methods still have their problems: (1)...
متن کاملAn Efficient Hybrid Metaheuristic for Capacitated p-Median Problem
Capacitated p-median problem (CPMP) is a well-known facility-location problem, in which p capacitated facility points are selected to satisfy n demand points in such a way that the total assigned demand to each facility does not exceed its capacity. Minimizing the total sum of distances between each demand point and its nearest facility point is the objective of the problem. Developing an effic...
متن کاملAn Effective Feature Selection Approach Using the Hybrid Filter Wrapper
Feature selection is an important data preprocessing technique and has been widely studied in data mining, machine learning and granular computing. In this paper, we introduced an effective feature selection method using the hybrid approaches, that is, use the mutual information to select the candidate feature set, then, obtain the super-reduct space from the candidate feature set by a wrapper ...
متن کاملA hybrid wrapper / filter approach for feature subset selection
This work presents a hybrid wrapper/filter algorithm for feature subset selection that can use a combination of several quality criteria measures to rank the set of features of a dataset. These ranked features are used to prune the search space of subsets of possible features such that the number of times the wrapper executes the learning algorithm for a dataset with M features is reduced to O(...
متن کاملHybrid filter-wrapper feature selection for short-term load forecasting
13 Selection of input features plays an important role in developing models for short14 term load forecasting (STLF). Previous studies along this line of research have focused 15 pre-dominantly on filter and wrapper methods. Given the potential value of a hybrid 16 selection scheme that includes both filter and wrapper methods in constructing an 17 appropriate pool of features, coupled with the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Scientific Reports
سال: 2019
ISSN: 2045-2322
DOI: 10.1038/s41598-019-54987-1